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ABSTRACT

One of the most fundamental challenges of working in the ocean
enviromment is the establishment of a geodetic control system, similar to
the more familiar geodetic networks on the earth's land areas. Applications

of ocean bottom control network are numerous, which are well identified by

the marine community.

The NAVSTAR constellation of the Global Positioning System (GPS)
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provides a unique capability. The expected visibility of its four to

v
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seven satellites anywhere anytime on the earth's surface will enable .
instantaneous in real time positioning of a buoy, thus eliminating complex
mathematical modeling of its motion. This buoy can simultaneously be

triggered to measure ranges to a network of ocean bottom transponders

through acoustic link, thus replacing the conventional expensive use of a
ship. The concept takes advantage of a double pyramid, which is formed

between GPS satellites and the transponders linked via buoy. The measured

ranges, solved in the geometric mode through the least squares method, will

thus provide geodetic positions of transponders.
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The present paper discusses the concept details and developes the
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mathematical model for the system. Some simulated results of this novel
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approach are also included.
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INTRODUCTION

The ocean environment presents a set of conditions under which
we still are not accustomed to operate. One of the most fundamental
challenges is the establishment of a geodetic control system, similar
to the more familiar geodetic networks on the earth's land areas. Thus,

the effort to obtain accurate marine geodetic measurements in the ocean

.and the techniques (or design of experiments) to utilize these

measurements need an innovative approach.

The requirements for solving various interdisciplinary problems using
precise and accurate marine geodetic surveys are available ir Saxena (1975).
Similarly, applications of an ocean-bottom control network are numerous and
well identified in the marine community (Saxena, 1980).

In this direction, the NAVSTAR comstellation of the Global Positioning
System (GPS) provides an unique capability. B8esides all other currently
available techniques for navigation or geodetic applications in the ocean
areas, the GPS would be the most versatile in its utility and global
availability, when fully operational. The expected visibility of its four
to seven satellites anywhere anytime on the earth's surface will enable
instantaneous in real time positioning of a buoy geometrically. The
knowledge of such real time positions will thus eliminate complex mathematical
modeling of buoy motion on the ocean surface.

At any instant, when the buoy position 1s being obtained from the GPS,
the buoy can simultaneously be criggergd o measuyre ranges to a network
of ocean bottom transpouders through acoustic links. The concept :ake;
advantage of a double pyramid (Figure 1), which is thus formed between

the GPS satellites and the transponders linked via the floating buoy. The
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use of buoys is extremely advantageous as it gives more flexibility and
will replace the conventional ships and their expensive budgets.

The measured ranges for any instantaneous double pyramid will comnstitute
a geodetic "event' and these events are solved using the geometric mode
(Mueller et al., 1973; Kumar, 1976) through the least squares method
providing a geodetic comtrol transponder network in the marine areas. The
present paper discusses the concept details, developes the mathematical
model for the system and analyzes some simulated results of this novel

approach.

2. 'GEOMETRIC POSITIONING

Figure 1 constitutes a double pyramid, one "inverted" above the ocean
between the GPS constellation and the buoy and the other '"nmormal" undermeath
between the buoy and the transponders. The following subsections include
some pertinent details about the GPS ranging and the acoustic links involved

in the system.

2.1 The Inverted Pyramid

Range measurements to the GPS are performed electromically by code
correlation on each of two coherent L-band frequencies for first-order
atmospheric refraction correction. The geometric range between the receiver
and the satellite transmitter plus the effect of clock synchronization
error between them is known as pseudo range. Other error sources are given

~ in Fell (1980).
It is assumed here that the geodetic receivers are capable of ranging

_to multiple GPS satellites simultaneously and two or more independent
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receivers located at different buoys or ground statioms can generate
simul taneous range observations (Ward, 1982). The main function of an
inverted pyramid obserQation or "event" is to provide real time instantaneous
buoy position in the GPS coordinate system (Figure 2a).
The uncertainty of a GPS range observation is currently estimated in
the range 0.5 to 1.0m (Ward, 1982) and positional recovery in a navigational [
mode (or the inverted pyramid in this paper) are congervatively anticipated

at this time as 10m in each coordinate axis.

,
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2.2 The Normal amid
Position determination of marine control points including performance

analysis of acoustic navigation systems and net-unit configurations is under E

extensive study with the marine technologists (Knowles and Roy, 1972; ]

Saxena, 1975; Durham et al., 1975; Yamazaki, 1975; Smith et al., 1975;

Spindel et al., 1975; Saxena, 1976 and 1981). The typical high

resolution acoustic navigation technique considered here is a pulse

positioning system (PPS). The PPS employs a transducer emitting acoustic
a

pulses atﬁson:rolled repetition rate and acquiring “"replied" data from

U

AN

a set of bottom-moored acoustic transponders (Spindel et al., 1975).

: 3
‘1 The slant range between the buoy and the transponders is estimated from the i
c; measured acoustic round trip travel time. f
gz The rms error in the estimation of range with an optimum pulse system ;
; is approximately given as (Spindel et al., 1975): %
Sp= e (1) g
o
% where ¢ is the sound velocity, T duration time for a rectangular pulse, S the 5;
. peak signal to noise ratio at the output of the matched filter and R the ;j
! _ ] -
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slant range measured (Figure 1b). This paper also estimates oy to be about Swa

for ranges between 5 to 15 km.

3. MATHEMATICAL MODEL

The detailed discussion on the geometric mode solution of a topocentric

range is available in (Krakiwsky and Pope, 1967; Mueller et al., 1973; and
Muyeller et al., 1975). Figure 3 shows the geometry for range Ti4 between
any cransmitter Pj(uj, vy, wy; 4 =1, 2, 3,..J to a recelver Qy(uy, vy, Wy;
j =1, 2, 3,...), say between the GPS satellite and the buoy in the inverted
pvramid configuration.(ﬂote:: At the same instant, the range Rj,, betwaen

the buoy and the moored transponder in the normal pyramid is implied.) Then,

rm .

the following relations in the earth-fixed coordinate system can be writtem: .

F:‘;j= (u-ui)2 +(vj ""i) *(wj u,_)]yfru-o 2)
and Fjp @ [(uj w) + vy =g+ Cug w,,gz]/’z Rig=0 (3
where the u-axis is oriented towards the Greenwich Mean Astronomical ‘
Meridian and the w-axis towards the Conventional International Origin
(both as defined by the Bureau Intermational de L'Heure). Here the v-axis
forms a right-handed system with u and w, and with u defines the average

geoderic equacor. For actual observationms, equations (2) and (3) would

require certain modificacions to represent systematic and random error sources

(Fell. 1980; Hui., 1982; Wells et al., 1982; Harman, 1982).

These basic mathematical models are solved through trigoncmetric - N

computations based on an event (Reilly et al., 1972), in inverted and/or j

normal pyramid mode. The geometry of solution is stronger for an event which

includes more than four satellites or transponder stations (Blaha, 197la;

OPTY  ARII T

1)
g Escobal et al., 197358mith et al., 1975; Saxena, 1976) and the optimal
?
2

. . AN
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survey pattern for the normal pyramid will change with the water depth

relative to station chords (Smith et al., 1975). As the system extends
with the increase of "i", "3j", and/or "m", the model (equations (2) and (3))
becomes overdetermined and the unknown transponder position parameters are

then recovered through a least squares adjustment.

3.1 Observation Equation

The equations (2) and (3) are linearized by a Taylor series expansion
about the preliminary values of the satellite and Bucy positions, tran-
sponder stations’ coordinates and the observed ranges rij and ij to obtain
observation equations (Uotila, 1976) in the following form:

BV +AX + W =0 (4)
In the present paper, as a first step, a simpler adjustment procedure is
The equation (2) is not linearized and the inverted pyramid is

adopted.

solved only to obtain the initial approximate buoy positions (uj°,vj°,wj°)
for use in any normal event at time T (Figure 1). For range observation

ij (equation (3)), equation (4) is then defined as:

rd [}
B. -_551.2_-[0 '.-1?0]

J ORjm

OF;m !
. S Las g . I =g
KT [aJ"" e

° ° [} ° ® °
o Mm -U Ma -V M ¥ T
™ gr“ %yn Rjn\

' T

Xjom ™ [dumdvm du,, | duj dvj dw_-,]

c °
Wim = Ry, (computed) - R, (observed).

The R® value is computed from the approximate buoy and transponder positions

jm

to evaluate misclosure vector ij. Also, the design matrix Bjm here becomes

a negative unit matrix [-I] and the residual matrix ij then corresponds

directly to the observed ranges ij.
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3.2 Jormal Equation

If P is the weight matrix for the observed ranges, then the variation

function I'to be minimized is given as:
§ = viev + xTp.x - &kT(ax - v + W) (5)

where o ' 1
XJ' : ‘
|

P, ®)| ~cccamamacae-
X i
' Py,
K 2 Vector of Lagrange multipliers.

After enforcing the minimum condition in equation (5) and eliminating K and

V, the normal equations for buoy and transponder positions can be written as:

Njj Njm S Uj
+ =0 (6)
Smj Nmm Xm Um
In this development, the buoy positions (Xj) are only necessary to
provide the link between the GPS constellation and the transponders and to
develop the normal equations (6). As the "nuisance" parameters Xj are
eliminated, the final form of the normal equations is then obtained in the

following form:

NXm + U =0 N

4. ANALYSIS OF GEOMETRIC POSITIONING

In the current analysis, a typical rectangular network of 25 transponder

stations is visualized with a grid spacing of 10 km in.near shore areas

(Figure 4). The simultaneous "events" to a buoy position. were considered

Q; for two cases, where four and six transponder stations participated in an
:; avent through acoustic ranges. This scenario can be extended to include
i; 3 or more stations from an adjoining coastline.

~. In the normal equations the scale definition is provided implicitly
X fr>m the observed ranges, while theoreticallv speakinz,definitions for

: 7
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origin and orientation are required from extermal information. One choice
for these external conditions is the "inner" comnstraints or free
adjustment (Blaha, 1971b), which then produces a solution with covariance
matrix having winimum trace. This implies that the center of gravity of
all transponder stations, as computed using initial coordinate values, will
not change after the adjustment and the sum of rotations of points around

all three coordinate axes will be zero.

Further interpietations are based here on a similar extensive study
(Kumar, 1976) carried out by the first author on geometric mode positioning.
The preliminary results have been extrapolated for the "normal" tran-
sponders pyramid (using a l5m crecovery estimate in respect to instantaneous
buoy position from GPS in the inverted pyramid mode) from solutioms 1-13 and
1-14 of the study (Kumar, 1976) through further error analysis and Table 1

gives a brief summary of the four and six station configuratioms.

Table 1
Relative Position Recovery

for a Transponder Network

No. of Tran~- S Estimate Relative Remarks
sponders Co- [(AcoustigStandard | Position
observing in nge in [Error in | Recovery (Extr
an event the Suoy polated)!
normal | Poaitio
pvramid ifrom che
nverted
vrama
! : 1
4 l.5m 15m 1.5 to m Recovery
i susceptibli
6 1.5m 5m | 9.8 e lm to critica

PRy R
¢ 1 [IREVR DU PG Y g upn LS

RS

+Xumar, 1976.
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A more detailed error analysis is in hand and the results of the extended

study will follow. However, preliminary investigatioms done so far show

great promise.

5. SUMMARY
The double pyramid approach gives more flexibility in using the GPS

for marine control by replacing conventional (and costly) ships and

eliminating mathematical modeling of ship's velocity. The paper presents

the concept demonstrating the potential of geometrié positioning of a

transponder network. Further investigations (Kumar and Fell, 1983) in

respect to systematic and random errors, optimal configuration in selecting

the satellites and transponders in the double pyramid, and variations in

network geometry and definition are under way. Using GPS, the double

pyramid geometric positioning offers a novel approach for ocean battom

geodetic control networks with many applications.
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